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Abstract-The analysis of complex neural network models via 
analytical techniques is often quite difficult due to the large 
numbers of components involved, and the nonlinearities asso- 
ciated with these components. For this reason, simulation is 
seen as an important tool in neural network research. In this 
paper we present a framework for simulating neural networks as 
discrete event nonlinear dynamical systems. This includes neural 
network models whose components are described by continuous- 
time differential equations, or by discrete-time difference equa- 
tions. Specifically, we consider the design and construction of a 
concurrent object-oriented discrete event simulation environment 
for neural networks. The use of an object-oriented language 
provides the data abstraction facilities necessary to support mod- 
ification and extension of the simulation system at a high level 
of abstraction. Furthermore, the ability to specify concurrent 
processing supports execution on parallel architectures. The use 
of this system is demonstrated by simulating a specific neural 
network model on a general-purpose parallel computer. 

Index Terms- Concurrent simulation, neural networks, non- 
linear dynamical systems, object-oriented programming, parallel 
processing . 

I. INTRODUCTION 

RTIFICIAL neural networks are biologically inspired A computing models characterized by large numbers of 
densely connected computational elements. The tremendous 
interest that has recently surfaced regarding these models 
has led researchers to propose their use in a wide range of 
application areas. Because of the analytical intractability of 
these models, a large portion of the research in the field 
of neural computation involves simulation. Furthermore, the 
parallel nature of neural network models makes them quite 
amenable for simulation on parallel computing architectures. 
In fact, the exploitation of this inherent parallelism is consid- 
ered a necessity if very large neural network models are to be 
investigated [l]. In this paper we consider the development of 
simulation capabilities that support both rapid prototyping of 
neural network models, as well as their execution on parallel 
computing platforms. The design choices made during this 
development were influenced by the flexibility versus speedup 
trade-offs discussed below. 
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The target architecture for implementing parallel neural net- 
work simulations will either be a special-purpose or general- 
purpose parallel computer. Maximum speedup is currently 
achieved by designing special-purpose computers that directly 
implement neural network models using VLSI techniques 
[2]-[5]; however, the ability to modify the model is sacrificed 
once the neural network is “cast” into hardware. In addition, 
the time required to design, develop, and test such a system 
is typically on the order of months. Thus, the use of special- 
purpose computers is most appropriate when the specific form 
of a neural network model intended for use in a particular 
application has been finalized. 

The other alternative is to utilize general-purpose computing 
platforms that are designed to execute a wide variety of 
applications. In this case, the model is created in software, and 
some degree of speedup is sacrificed for increased flexibility. 
Furthermore, a number of different approaches to the simula- 
tion of a given model on a general-purpose parallel computer 
can be considered. In each case, the trade-off is again one 
of speedup versus flexibility. First, a model can be directly 
mapped onto the parallel hardware using a programming 
language specifically designed for that particular machine 
[6]-[8]. This will typically yield the largest possible speedup 
when utilizing a general-purpose computer. The difficulty with 
this approach is that it requires the implementor to possess an 
understanding of the underlying hardware, including the pro- 
cessor interconnection scheme and communication protocol. 
Consequently, this mapping process is both time consum- 
ing and machine specific. An alternative is to implement 
the application using a general-purpose parallel programming 
language. This allows the compiler to automatically map 
the application onto a particular computer, thereby allowing 
the program to run on any parallel machine for which the 
compiler is available. In general, a direct mapping is more 
efficient than this automatic mapping; however, the use of a 
general-purpose concurrent programming language allows one 
to specify parallel operations at a higher level of abstraction. 

In this paper, we investigate the simulation of neural net- 
work models using a general and easily modifiable simula- 
tion model at the level of a general-purpose object-oriented 
concurrent programming language. We believe that this is 
an important level for performing neural network research 
because it allows investigators to easily and rapidly test 
new ideas while providing the processing power necessary 
to investigate nontrivial models. Furthermore, once a network 
architecture has been realized and tested through simulation, 
it is possible to directly implement it using special-purpose 
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hardware to achieve maximum speedup. 
The organization of this paper is as follows: In Section I1 

we discuss concurrent object-oriented programming in general, 
and then consider a specific language, Concurrent C++. A 
general model for neural computation is then presented in 
Section 111. This model forms the framework for the generic 
Concurrent C t +  neural network simulation system discussed 
in Section IV. In Section IV we also discuss how the con- 
current processes associated with this simulation model are 
scheduled and synchronized so that useful parallel simula- 
tions can be performed. In Section V we consider how the 
concurrent simulation model developed in Section IV can 
be extended through inheritance to implement specific neural 
network models. We then demonstrate the simulation of a 
specific model on a general-purpose parallel computer. Finally, 
in Section VI we conclude with a discussion of our results. 

11. CONCURRENT OBJECT-ORIENTED PROGRAMMING 

Concurrent object-oriented programming languages utilize 
object-oriented programming capabilities while providing the 
ability to specify concurrent execution. From a software engi- 
neering perspective, the data abstraction capabilities offered 
by the object-oriented methodology are important because 
they facilitate the building of reusable and easily extendable 
software modules. As such, object-oriented programming tech- 
niques are currently being considered for addressing issues 
involved in “programming in the large.” Another advantage 
is that the decomposition techniques used in the design of an 
object-oriented program are consistent with those used in the 
design of concurrent programs. 

The concurrent object-oriented language used to implement 
the simulation system discussed in this paper was the Con- 
current C++ programming language developed at AT&T Bell 
Laboratories. This language was created by integrating the 
object-oriented language C++, and the concurrent program- 
ming language Concurrent C. Implementation issues involved 
in this merger are discussed in [9]. 

Below we briefly discuss some of the facilities available 
in Concurrent C++. We will proceed by first discussing those 
facilities particular to C++, followed by those particular to 
Concurrent C. All of the facilities discussed are available 
in Concurrent C++. More detailed discussions of the C t +  
programming language can be found in [lo] and [ l l ] .  Detailed 
discussions of Concurrent C and Concurrent C++ can be found 
in [12]. 

Computation in object-oriented programs centers around 
the manipulation of class objects. A class can be defined as 
an implementation of an abstract data type [13]. Recall that 
an abstract data type includes a definition of both the data 
elements, as well as the operations that may be performed 
on those data elements. An object is a particular instance 
of a class. For example, we may implement a stack using 
a class. In this case, the class will define what type of data 
elements can be stored on the stack, and how the operations 
(i.e., push, pop, etc.) will be implemented. The routines used 
to implement these operations are referred to as member 
functions. An instance of the stack class (i.e., a stack object) 

must be created if we wish to use it. Messages sent to this 
object may invoke specific member functions that operate on 
the stack data elements. 

In C+t ,  class declarations consist of two parts: a specifi- 
cation and a body. The class specification serves as the “user 
interface” to the class. Class specifications have the form 

class c l a s s  name : d e r i v a t i o n  l i s t  { 
private: 
p r i v a t e  members 
protected: 
p r o t e c t e d  members 
public : 
p u b l i c  members 

1; 
where the members of a class may be either data elements or 
functions. Class members specified as private are not visible 
to elements external to the class, while public members are. 
Protected class members are treated as if they were private 
class members, with one exception. Objects of derived classes 
(discussed below) treat the protected members as if they were 
public members. The second part of the class declaration, the 
class body, consists of the bodies of member functions that 
were declared but not defined in the class specification. 

The derivation list in the class specification supports inher- 
itance-one of the most important concepts found in object- 
oriented programming languages. Inheritance allows one to 
create a new class from existing classes. In this case, the new 
class that is being declared (i.e., the derived class) is said to 
be derived from the existing base classes. A derived class 
inherits the members of its base classes, and may also add 
new members. A derived class may also redefine any member 
function provided by the base class by simply supplying a new 
member function that has the same name as the old member 
function in the base class. In this case, the new member 
function in the derived class is said to overload the member 
function with the corresponding name in the base class. This 
allows different meanings to be attached to the same member 
function name; which member function is invoked when the 
name is called in a program depends upon the specific class 
being used. Furthermore, if the overloaded function is declared 
virtual in the base class, then the overloaded function will be 
dynamically bound to an object at run-time. This trait, known 
as polymorphism, is utilized extensively in the neural network 
simulation discussed in this paper. 

Most concurrent programming languages are based on the 
use of processes. A process has its own thread of execution, 
stack, and machine registers. Thus, two processes may execute 
simultaneously on separate processors, or they may be time- 
sliced on a single processor. The concurrent programming 
facilities provided by Concurrent C are extensions of the 
Communicating Sequential Processes [ 141 and Distributed 
Processes [15] models. These models also form the basis 
for the concurrent programming facilities offered by the Ada 
programming language. 

In Concurrent C, a process definition consists of a specifi- 
cation and a body. They have the form 

process spec p r o c e s s  name ( p a r a m e t e r  t y p e s  
a n d n a m e s )  { 

t r a n s a c t i o n s  
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Fig. 1. A “time-line” diagram that illustrates how processes interact during 
a synchronous transaction call. A solid line indicates that a process is running, 
while a dotted line indicates that it is waiting. 

Fig. 2. A general model for computation in neural networks. 

operation concurrently only if a process is somehow associated 
1; with that opera tion. process body process name(parameter names) 
{ 

1 
process code 

111. A GENERAL MODELFOR NEURAL COMPUTATION 
The process specification contains all the information neces- 
sary to create and interact with processes of the type being 
defined, while the process body contains the code (along with 
the associated declarations and definitions) that is executed by 
a process of that type. 

Only the information given in the process specification is 
visible to other processes. This information includes a list of 
available transactions. Concurrent C processes communicate 
by using transactions. These transactions can be either syn- 
chronous or asynchronous. In the synchronous case, illustrated 
in Fig. 1, a client process sends a message to a server process 
requesting it to perform some service. The client process 
then must wait for the server process to accept the message 
and perform the desired service. Upon completion, the server 
process returns some data to the client process which is then 
free to resume execution. Thus, a synchronous transaction 
requires both a synchronization between two processes, as 
well as a bidirectional exchange of information. Note in Fig. 
1 that the client process is “blocked” while the server is 
servicing the transaction. This is not the case for asynchronous 
transactions, the client process does not wait for the server 

In this section we define a general model for neural com- 
putation that serves as the framework for specifying virtually 
any neural network paradigm. As we shall see in the following 
sections, the ability to specify such a general model has 
important implications in the object-oriented design of the 
simulation system. 

The architecture of a neural network model can be described 
by a weighted directed graph in which the nodes of the graph 
represent neurons, and the weighted edges represent a set of 
internal dynamical parameters that generally correspond to 
synaptic weights. A portion of such an architecture is depicted 
in Fig. 2. 

The state or activation value of each node in this system 
can be modeled by a dynamical variable. We will represent 
the activation value of the j th  node, vi, using the variable 
xj. Computation in a neural system is usually viewed as an 
evolution through time of these node activation values. Thus, if 
we assume continuous-valued states and equations of motion, 
the state of the system may be described by the following 
equations: 

(1) 
process to receive the message, and it is not possible for the 
server process to return results to the client process. Thus, an 

d 
T Z - p ( t )  = Gj(%(t) ,uj( t ) )  

asynchronous transaction involves a unidirectional exchange 
of information, and no synchronization. 

The Concurrent C++ programming language merges C++ 
and Concurrent C to produce a language with both data 
abstraction and concurrent programming facilities. The ad- 
vantages of using the data abstraction facilities offered by 
classes in sequential programming apply equally to concurrent 
programming. Specifically, classes can be used in Concurrent 
C++ to hide the implementation details of a process, and to 
ensure that the proper protocol for interacting with a process is 
observed. In addition, the ability to use inheritance facilitates 
the building of reusable concurrent program modules. 

In most concurrent object-oriented programming language 
models, objects are treated as sequential processes that respond 
to messages sent to them. Furthermore, is it assumed that every 
object may execute its operations concurrently [16]. This is not 
necessarily true in Concurrent C++: an object may execute an 

where T~ is a positive numerical constant that defines the time 
scale over which the activation values change, and uj(t) is the 
net input to node v j  at time t. The form of the 4 function in 
(1) will be determined by the particular neural network model 
under consideration. Furthermore, for discrete-time models, 
(1) is often approximated using first-order finite difference 
equations. Particular forms for (1) can be found in [17]. 

Before discussing the generation of a node’s net input value, 
we first must consider how a node generates an output value. 
Associated with each node v j  there is an output function, 
f(xj), that is responsible for mapping the current state of 
the node’s activity xj to an output signal o j  as shown in Fig. 
2. Commonly used forms for the function f are the logistic 
function, 
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typedef trans async (*tptr)(); and the hardlimiting threshold function, 

(3) 

where typically ,B > y, and S is the threshold value. Note that 
for large a, (2) can be approximated by (3) with p = 1 and 
y = 0. 

The output of node uuz is multiplied by weight waJ to produce 
an input to node vJ, and the collection of inputs to uJ are 
combined according to some operator to produce the net input 
uJ.  Typically, uJ is expressed as the following propagation 
rule: 

uj ( t )  = O a ( t ) w a J  ( t )  
a 

where wuzJ represents the value of the weighted edge incident 
from U, and incident to vJ, and the sum is over all nodes 
that are incident to uJ .  In some models, positive and negative 
weight values are considered excitatory and inhibitory connec- 
tions, respectively, while in other models, there are separate 
net input calculations for excitatory and inhibitory inputs. 

We now consider the manner in which the dynamics of 
system (1) can be modified so that learning occurs. The 
parameters that are adjusted through learning in a neural 
network are the weights w,]. Note that (1) is dependent on 
wuzJ through uJ . Thus, a learning rule must specify the adaptive 
dynamics that allow the weights of dynamical system (1) to 
be modified so that for an initial input, the steady-state output 
of the system represents the desired response. A constraint 
that must be observed in all neural network systems is that 
the modification of a given weight must be based solely on 
information that is locally available to it. This constraint, 
known as the locality constraint, implies that 

where T~ is a positive numerical constant that defines the time 
scale over which the weights change, and g ( u j ( t ) )  is a function 
that is computed based on information that is available to 
node u j  at time t. The particular forms of the 7-l and g 
functions are determined by the learning rule being employed 
in the neural network model under consideration. Again, there 
are analogous discrete-time representations for neural network 
learning rules. 

At this point, a discussion of time scales is in order. 
If the neural model is to be treated as a true dynamical 
system, then the system of coupled differential equations 
that describe the activation and weight dynamics must be 
executed simultaneously. In this case, the relaxation time for 
the node activation values should be much faster than the 
relaxation time of the weights. This ensures that the system 
parameters are adapted based on the steady-state response 
of the nodes, and not their transient response. Choosing 
T~ >> T~ in (1) and (5) enforces this behavior (see [18] for 
a more complete discussion of this issue). In many models, 
however, the dynamics of learning are separated from the 
activation dynamics of the nodes. In these models there are 
typically two phases of operation: a training phase in which 

c l a s s  node { 
protected 

node-process np; 
int numinputs, numoutputs; 
double output, activity; 
c l a s s  input-edge *input-connect; 
c l a s s  outputrdge *outputloMect; 

void Input(int InpntNum, double Val, tptr Tp); 
void ComputeNodeOutput(tptr Tp); 
void UpdateNodeWeights(doub1e StepSh, tptr Tp); 
void PropagateOntputs(tptr Tp); 
v ir tual  double ComputeActivity(doub1e StepSue); 
v ir tual  double Computeoutput(); 
v ir tual  void UpdateWeights(doub1e StepSi ) ;  
// remaining member funaionr not r h  

public: 

Fig. 3. The specification of the generic node class. 

the network weights are adjusted, and a performance phase 
in which the network weights are held constant while input 
patterns are presented and network outputs computed. Since 
the learning and activation dynamics are effectively separated 
in this scheme, issues of time scales are not important. 

IV. THE CONCURRENT BASE CLASSES 

This section describes the basic components of the simu- 
lation system. These include a base class that was developed 
to represent a generic node, as well as another base class that 
uses the node class to provide the architectural framework for 
a network and the primitives for accessing network elements. 
These classes provide the scaffolding upon which more com- 
plex neural network models can be built through the use of 
inheritance. Below we present the interfaces to the Concurrent 
C t t  base classes used in the simulation system, and we discuss 
how the concurrent processes associated with these classes are 
organized so as to exploit the parallelism available in neural 
network models. 

The Class Interfaces 

We begin by discussing the manner in which network nodes 
are represented. Fig. 3 shows the specification of node, a 
class used to represent generic node elements. The simulation 
system is constructed so that the node class must serve as 
the base class for any specific node model that we wish to 
simulate. 

Many of the member functions in the node class require a 
transaction pointer as one of their parameters. Thus, in Fig. 3 
we use the typedef  facility to declare a new type name. This 
declaration makes the name t p t r  a synonym for a pointer to 
an asynchronous transaction. A pointer to any asynchronous 
transaction containing an empty parameter list can be assigned 
to a variable of type t p t r .  The use of transaction pointers 
allows process interaction points to be dynamically specified. 
We will subsequently show how transaction pointers are used 
as a synchronization mechanism in the simulation system. 

Note that the protected member np in Fig. 3 is of type 
n o d e g r o c e s s ,  a process discussed in detail below. Thus, 
every object of class node will have a concurrent process 
associated with it. In addition, the protected members a c t i v -  
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class network { 
protected 

seheduler-proceas scheduler; 
int numnodes, numlayers; 
int modes-perlayer; 
int rtconnectionaatrix; 
class node tmd; 
// mining datu members not shown 

void ArsignInputs(int Pattern”); 
I/ mining member finciiona not shown 

public: 

h 

Fig. 4. The specification of the network class. 

ity and output are used to store the activity state xJ, and the 
output state oJ of the node. The remaining protected members 
are used to store information related to the input and output 
connections associated with a node. 

A number of the member functions in the node class are 
declared as virtual. These include the functions that are used 
to compute the activity and output of a node, and the function 
used to update the weights incident to a node. These are the 
functions that will be overloaded in derived classes allowing 
specific node models to be simulated. The significance of using 
virtual functions is that they allow a general neural network 
class to be constructed independent of any particular node 
model. 

Specifically, class network in Fig. 4 is patterned after 
the general model presented in Section 111, and will be used 
through inheritance to implement specific neural network 
models in Section V. Thus, network serves as a generic base 
class for neural networks. Most of the data members in this 
class are used to store information related to the architecture 
of a network. For example, num-nodes stores the number of 
nodes in the network, and nodesger-layer is a pointer 
to a dynamically allocated array that stores the number of 
nodes in each layer of the network. A two-dimensional array is 
dynamically allocated and used to store the specific connection 
pattern of a network-connection-matrix is a pointer to 
this array. The variable nd is used to point to an array of 
pointers to node objects. A pointer to any object derived 
from the node class can be assigned to one of these array 
elements. Furthermore, the virtual functions associated with 
the class of the derived object can be invoked through the 
pointers stored in this array. This allows multiple types of 
nodes to exist within a single network, and also allows us 
to write the member functions in the network class so that 
they operate on generic node objects. When any one of these 
member functions is actually called in a program, the form of 
the nodes in the network will determine the actual operations 
that are performed. 

Finally, a concurrent process, scheduler, is associated 
with the network class. The manner in which this process 
interacts with other processes in the simulation system is 
discussed next. 

S i  
Time 

k 

k+l 

P3 ... S M 

Fig. 5. An idealized “time-line” diagram that illustrates how process interact 
during the typical phases of a single iteration of a neural network simulation. 
P1-P.y are node processes, S is the scheduler process, and 32 is the main 
process. A solid line indicates that a process is running, while a dotted line 
indicates that it is waiting. Open arrows represent asynchronous transactions, 
and closed arrows represent synchronous transactions. See the text for a 
description of the process interactions. 

ing inherent parallelism is called the distributed model compo- 
nents approach [19]. In this approach, each component in the 
system being simulated is assigned to a different process. This 
decomposition technique is consistent with object-oriented 
design in which each system component is represented by an 
object. 

When using a distributed model components decomposition 
in discrete event simulation, specific schemes for synchro- 
nization and deadlock handling must be employed. Different 
approaches are taken depending upon whether the simulation 
time advances in fixed increments (time-driven) or moves from 
one event time to the next (event-driven), and whether these 
advances occur synchronously or asynchronously. For neural 
network simulations, we are concerned with using discrete 
event simulation to simulate an inherently continuous-time 
system by discretizing time. Thus, the time-driven approach 
is most natural. Below we describe a synchronous time-driven 
discrete event simulation approach to the simulation of neural 
network models. In this approach, the simulation at a particular 
time step typically proceeds in three phases: a state update 
phase, which involves computing the outputs of the network 
nodes at the current time; a communication phase, which 
involves propagating these outputs: and a weight update phase, 
in which the weights are modified according to the network 
learning rule. 

Recall that a process is associated with each node object, 
and that a scheduler process is associated with a network 
object. An illustration of how these processes interact during 
the typical phases of a neural network simulation discussed 
above is given in Fig. 5. This figure shows the “time-lines” 
of the processes during a single iteration of the simulation. A 

Process Scheduling and Synchronization 

There are numerous ways to decompose a simulation for 
processing on multiple processors. The decomposition tech- 
nique that has shown the greatest potential in terms of exploit- 
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solid line indicates that a process is running, while a dotted 
line indicates that a process is waiting. The time-lines of the 
processes associated with the N nodes in a network are labeled 
PI through PN, while the time-lines for the scheduler and main 
processes are labeled S and M ,  respectively. The main process 
is the process associated with the particular neural network 
model being simulated. As mentioned in Section 11, processes 
interact through transactions. In Fig. 5, an open arrow is used 
to represent an asynchronous transaction, and a closed arrow 
is used to represent a synchronous transaction. Note that only 
the main and scheduler processes interact through synchronous 
transactions. These interactions serve as the synchronization 
mechanism that to enforces the proper linear ordering on the 
processes in the simulation. These interactions are discussed 
in more detail below. 

Let us consider the three phases depicted in Fig. 5 that 
occur during a typical iteration of a neural network simulation. 
First, the output states of the nodes at simulated time IC are 
computed, assuming an initial set of inputs has been supplied. 
In order to maximize concurrency, the main process issues 
a sequence of asynchronous transactions calls to the node 
processes requesting them to compute their outputs. Because 
these calls are asynchronous, the main process is not blocked 
after issuing the initial transaction call, but instead may 
continue sending transaction calls to other node processes. This 
allows the computation of the node outputs to be overlapped 
in time. 

Before proceeding to the next phase (where the nodes 
propagate their outputs to adjacent nodes) we must guarantee 
that all nodes have computed their outputs at time IC.  That is, 
a synchronization step is required. If we proceed to the next 
phase without synchronization, then it is entirely possible for 
a node process to receive a request to propagate its output 
before the request to compute its output has been received. 
Thus, the output at time k - 1 would be propagated, instead 
of the output at time I C ,  and the proper linear ordering for that 
process is not maintained. 

This synchronization step is implemented using a call back 
mechanism. Each asynchronous transaction call issued by the 
main process supplies a transaction pointer to the receiving 
node process. At the completion of their processing activities, 
each node process issues an asynchronous transaction call 
through this transaction pointer. This transaction call is simply 
an acknowledgment that can be received by the scheduler 
process. Thus, after the main process issues the initial set 
of asynchronous transaction calls, a synchronous transaction 
call is made to the scheduler process. This call forces the 
main process to wait until the scheduler process has received 
acknowledgments from all node processes. At this point, the 
synchronous transaction is completed, and the main process 
may proceed to the next phase. Therefore, the main process 
is blocked from proceeding to the next phase until all node 
processes have completed the processing required to compute 
their output state. 

In the next phase, the main process again issues a series of 
asynchronous transaction calls to the node processes-in this 
case instructing them to propagate their output values to all 
adjacent nodes in the network. Thus, in Fig. 5 we see that the 

process spec schednler-process() 

trans a s p c  aclm(); 
{ 

1; 

{ 

trans void wait(int nnmmsgs); 

process body schednler-process() 

for (;;I 
lelect { 

accept wait(nummsgs) { 

accept rcli.0; 
for (int i=o; i<nummags; i++) { 

I 
1 
or terminate; 

1 
1 

Fig. 6. The specification and body of the scheduler process. 

main process issues these asynchronous transactions (again, 
supplying a transaction pointer to each node process), and then 
initiates a synchronous transaction with the scheduler process, 
causing the main process to move into a wait state. Each 
node process then passes its output, as well as a transaction 
pointer, to its adjacent nodes. When a node receives an output 
value, it notifies the calling process that it has received the 
output by invoking an asynchronous transaction through the 
transaction pointer provided by the calling process. This call 
back mechanism allows each node to determine when all 
of its outputs have been received. At this point the node 
process informs the scheduler process that it has completed 
communicating its outputs. This is accomplished by invoking 
an asynchronous transaction through the transaction pointer 
supplied by the main process. When the scheduler process 
is notified that all nodes have propagated their outputs, it 
completes the synchronous transaction with the main process, 
allowing the main process to move on to the next phase. 
The use of the call back mechanism in this phase allowed 
the communication events required to propagate node output 
values to be overlapped in time. 

In the final phase, the network weights are adjusted through 
learning. This phase is similar to the first phase in that the 
main process issues a series of asynchronous transaction calls 
that instruct each node to adjust the weights that are incident to 
it according to its learning rule. Then the main process moves 
into a wait state until this processing is completed. The call 
back mechanism is also employed here so that the computation 
required by each node process can be overlapped in time. 

The scheduler process is given in Fig. 6. This process 
contains one synchronous transaction wait ( 1, and one asyn- 
chronous transaction ackn ( ) . The process body is composed 
of an infinite loop that contains a select statement. The select 
statement is used to select between alternative actions. In 
this case there are two alternatives: either accept a wait() 
transaction call, or terminate the process. The terminate alter- 
native will only be executed if either all other processes in 
the simulation have terminated, or they are all waiting at a 
terminate option. 

As was illustrated in Fig. 5, the scheduler process is 
used to synchronize the various phases of the simulation. 
The synchronous transactions issued by the main process in 
Fig. 5 are wait ( ) transactions. After this transaction call is 
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proem spec node-p-r(claas node *nptr, int numinputs, int num-outputs, 
input-edge *input.connect, output-edge toutput-connect) 

tram uync input(int inputnum, double 4, tptr np-ackn); 
traol uync ackn(); 
trans uync compute-output(doub1e stepsize, tptr tp); 
trans uync propagate-outputa(tptr tp); 
trans uync update-weights(doub1e stepsize, tptr tp); 
11 remaining tnuuactionr not s h m  

t 

1; 

Fig. 7. The specification of the node process. 

process body node.process(nptr, numinputs, num-outputs, input-connect, output.connect) 
f 

i n t  i, num-trans; 
double activity=O, output=O; 
tptr  np.ackn=((process node.process)c_mypid()).ackn; 
f o r  (;;) i 

select { 
accept compute.output(step>ize, tp) { 

activity = nptr-rComputeActivity(stepsize); 
output = nptr-ComputeOutput(step.size); 
(*tp)(); / /  transaction call to scheduler process 

} 
or accept propagatesutputs(tp) { 

num-trans = 0; 
f o r  ( i=O;  i<num-outputs; i + t )  { 

i f  (*(output-connect[i].id) == nptr) / I  self-connection 
input.connect[output.connect[i].input.num].value = output; 

(i(output.connect[i].id))-Input(output.connect[i].input.num, output, np-ackn); 
num-trans++; 

else { 

1 
} 
f o r  (i=O; i<num.trans; i++) 

(rtp)(); 
accept ackn(); 

/ /  transaction call to scheduler process 
> 
or accept input(inputmum, Val, tp) { 
input~connect[input.num].value = val; 
(*tp)(); // transaction call to a node process 

1 
or accept update.weights(stepsize, tp) { 

nptr-+UpdateWeights(stepsize); 
(*tp)(); 

or terminate; 

I /  transaction call to scheduler process 
1 

1 
} 
i 

Fig. 8. The body of the node process. 

received, the scheduler process remains in a loop until the 
appropriate number of asynchronous ackn ( ) transactions have 
been received from the node processes. At this point, a reply 
is sent to the main process so that it may continue processing 
(i.e., the synchronous wait ( ) transaction is completed). 

The most important processes in the simulation system are 
the node processes. The process specification and body of the 
node process are given in Figs. 7 and 8, respectively. Note that 
a pointer to the node object associated with the node process 
is supplied as an input parameter. 

Below we discuss the transactions responsible for the three 
phases in the neural network simulation discussed above. First 
consider the asynchronous compute-output ( ) transaction. 
In Fig. 7 we see that one of the parameters that must be 
supplied to this transaction is a transaction pointer. This is 
the transaction pointer that is supplied by the main process, 
and used to call the ackn( ) transaction in the scheduler 
process. In Fig. 8, the body of the accept alternative for this 

transaction involves three operations. The first updates the 
activity of a node according to the value returned from the 
ComputeActivity ( ) member function. Because Compute- 
Activity( ) is a virtual function, the type of object assigned 
to the nptr pointer will determine what operation is actually 
performed. Next, the output of the node is computed using 
the Computeoutput ( ) virtual member function. Again, the 
operation that is used to compute the output is dependent 
upon the type of object assigned to the nptr pointer. Finally, 
the transaction associated with the transaction pointer tp is 
invoked, sending an acknowledgment to the scheduler process 
that a particular node has completed its output computation. 

In the next phase, shown in Fig. 5, the nodes communicate 
their outputs to adjacent nodes. This is accomplished using 
the propagate-outputs ( ) transaction in the node process. 
Note in Fig. 7 that this transaction accepts a transaction pointer 
as a parameter. Fig. 8 shows the accept alternative for the 
propagate-outputs ( ) transaction. Two loops are involved. 
The first iterates over the number of output connections that 
a node has, and if a connection is a self-connection, then no 
communication event is necessary. The current output of the 
node is simply assigned to the appropriate input of the node. If 
the connection is to another node, then the Input ( ) member 
function of the adjacent node object is called and supplied with 
a transaction pointer. This member function simply calls the 
input ( ) transaction of the process associated with that object. 
The accept alternative for this transaction is also shown in 
Fig. 8. It involves two statements: the first assigns the output 
value supplied as a parameter in the transaction call to the 
appropriate input connection, the next invokes the transaction 
associated with the transaction pointer that was also supplied 
as a parameter. Returning to the propagate-outputs ( ) 
accept alternative in Fig. 8, we see that the second loop 
executes until every node process that was passed the output 
value returns an acknowledgment that the output was received. 
After this loop has completed, the transaction pointer supplied 
by the main process is used to communicate to the scheduler 
process that a particular node has completed the propagation 
of its outputs. 

The final phase shown in Fig. 5 is implemented using the 
update-weights ( ) transaction shown in Fig. 7. In the accept 
alternative for this transaction, shown in Fig. 8, the first state- 
ment calls the virtual member function Updateweights ( ) 
associated with the node object, and the second statement 
notifies the scheduler process when the node has completed 
updating its weights. 

The next section demonstrates how the concurrent base 
classes presented in this section can be used to simulate 
specific neural network models. 

V. A REPRESENTATIVE MODEL 
AND ITS PARALLEL SIMULATION 

Below we demonstrate how the simulation environment 
presented in the previous section can be used to simulate a 
specific neural network model. We then present simulation 
results obtained from this model’s execution on a parallel 
computer. The model we chose to simulate is intended to 
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Fig. 9. 
simulations were executed on. 

A schematic diagram of the parallel computer that the concurrent 

demonstrate the flexibility of this simulation system. In par- 
ticular, a continuous-time model that has a relatively complex 
weight-update rule, and whose nodes are not homogeneous 
was chosen. The simulation environment was also used to 
implement discrete-time neural network models (e.g., the 
discrete-time Hopfield network [20]). 

The parallel computer used to execute these simulations is 
depicted in Fig. 9. The architecture is a general-purpose bus- 
based shared memory multiprocessor system. Each processor 
in the system is a single-board computer (SBC) containing a 
25 MHz Motorola 68030 microprocessor, a Motorola 68882 
floating-point unit, and 8 Mb of on-board RAM. Access to 
local memory occurs via the SBC’s local bus-this limits 
contention for the global bus. For the simulations performed 
here, the system was configured with six SBC’s. Each SBC 
has a multi-tasking operating system that offers simple task 
management services, such as task creation and destruction 
[21]. Concurrent C++ is implemented on top of this operating 
system, and each Concurrent C++ process is mapped to a task 
in the underlying operating system. This allows the Concurrent 
C++ process to use the underlying SBC operating system 
facilities in a natural fashion, and limits the context switching 
overhead. 

The architecture of this machine, as well as the manner 
in which Concurrent C++ is implemented, favors simulations 
that involve coarse-grained processes (i.e., processes in which 
the ratio of the amount of computation to the number of 
communication events is large). In order to increase the 
granularity of the processes in the simulation system, the 
node process (see Fig. 8) was modified so that the prop- 
agate-outputs ( ) transaction only initiates communication 
events with other processes in the system if the output of the 
node associated with the transaction call has changed since the 
previous call to propagate-outputs ( 1. This optimization 
allowed significant performance improvements in many of the 
networks we simulated. We now present the neural network 
model that is used below to demonstrate the use of the 
simulation system. 

The ARTl Network 
A neural network architecture for the learning of recognition 

categories was derived by Carpenter and Grossberg [22]. This 
architecture was termed ARTl in reference to the adaptive 
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Fig. 10. The architecture of an ARTl network. 

resonance theory introduced by Grossberg [23]. It was shown 
that ARTl self-organizes and self-stabilizes its recognition 
codes in response to arbitrary orderings of arbitrarily many 
binary input patterns [22]. The neural network simulated here 
is actually an extension of the of the ARTl network that, under 
certain parameter constraints, behaves exactly like Carpenter 
and Grossberg’s original model [24], [25]. These extensions 
allow the ARTl model to be implemented solely as a set of 
concurrently executing nonlinear differential equations. (The 
simulation system can also be used to implement the original 
model if it is so desired.) 

The architecture of this augmented ARTl network is shown 
in Fig. 10. It consists of two subsystems. The attentional 
subsystem contains an input representation field F1, as well 
as a category representation field F2. The orienting subsystem 
contains a reset node that interacts with the attentional sub- 
system to mediate an internally controlled search process. In 
particular, the F1 field contains a single layer of nodes that are 
used to represent an input pattern. The F2 field contains two 
layers of nodes. The first layer of nodes is used to categorize or 
code the input patterns appearing at the nodes in the F1 field, 
and the second layer (the 6 nodes in Fig. 10) are inhibitory 
nodes that are used in conjunction with the reset node (w, 
in Fig. 10) to ensure that the proper nodes in the first layer 
of the F2 field are chosen to code the input patterns. Each 
node in the F1 field is connected via bottom-up weights to all 
nodes in the first layer of the F2 field, and each node in the 
first layer of the F2 field is connected via top-down weights 
to each of the F l  field nodes. Furthermore, each inhibitory 
node in the second layer of the F2 field is connected to a 
single node in the first layer of the F2 field, and the reset 
node vT receives input from both the input pattern and the F1 
field nodes, and passes its output to the inhibitory nodes in 
the F2 field. Below we summarize the form of the differential 
equations that define this ARTl model. These equations are 
presented in more detail in [22] and [25]. 

The activity of the network nodes in the F1 field and the first 
layer of the F2 field is described by the following differential 
equation: 

d 
d t  

T,-X = --z + (1 - Az)J+ - ( B  + Cz)J-  (6) 
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class theaholdnode : public node { 
protected 

public: 
double upper-bound, lowerhound, threshold-value; 

void Computeoutput(); 
// remaining membererfunctions not shown 

1; 

{ 
void thresholdnode::ComputeOutput() 

if (activity 2 threshold-value) 

else 
output = upperhound; 

output = lowerhound; 
1 

Fig. 11. The threshold node class. 

where x is the nodal activity; A,  B,  and C are network 
parameters; and J+ and J -  represent the total excitatory and 
inhibitory net input to the node, respectively. Equation (6) is 
called a shunting differential equation because J+ J -  multiply 
the node of activity x .  Notice that if A > 0 and C > 0, 
then the activity of the node remains in the bounded range 
[ -BC1, A-’] no matter how large J+ and J -  become. Note 
also that the activity of the node decays to a resting level of 
0 when J+ = J -  = 0. J+ and J -  are computed differently 
depending upon whether the node is in the F1 or F2 field. In 
both cases, these computations involve nonlinearities. 

The activity of inhibitory node .itj in the F2 field satisfies 

where 

and Ii is the ith component of the input pattern. 
The reset node satisfies 

M M 

where P and Q are network parameters, and U is the unit 
step function. 

The value of the bottom-up weight, w;j, associated with 
an edge connecting node vi in the F1 field to node v i  in 
the first layer of the F2 field is determined by the following 
differential equation: 

(9) 

where K is a network parameter, and the exact expression for 
E;j can be found in [22]. 

A similar differential equation determines the value of the 
top-down weights wj;. A description of how the parameters 
in these differential equations should be chosen, as well as 
theorems relating the initial value of the weights to network 
performance, can be found in [22] and [25]. 

Simulation Results 

All of the nodes in the ARTl network compute their 
outputs using the hardlimiting threshold function of (3). The 
threshold-node class shown in Fig. 11 was created to 
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c l a s s  Flmode : public thresholdnode { 
protected 

double A, B, C, D, tau, K, E, wt-tau; 
ode* W-eq; 
odett w-diEeq; 

void ComputeActivity(doub1e Stepsize); 
void UpdateWeighti(doub1e Stepsize); 
//-king member finetiom not shown 

public: 

1; 

Fig. 12. 
network. 

The class specification for the nodes in the F1 field of the ARTl 

represent these types of nodes. Specifically, this class was 
created by inheriting the generic node class. Notice that 
additional data members were added to represent the p, y, 
and S values for the threshold node (i.e., upper-bound stores 
p, lower-bound stores y, and threshold-value stores 6). 
The body of the virtual Computeoutput ( ) member function 
is also shown in Fig. 11. 

Each specific node type in the ARTl network simulation 
was created by inheriting the threshold-node class. As an 
example, consider the class specification of the F1 field nodes 
shown in Fig. 12. Most of the protected data members in this 
class are used to store the parameter values found in (6) and 
(9). In addition, two of the data members store differential 
equation objects that are used in the numerical solution of 
(6) and (9). Specifically, ode is the base class associated 
with a hierarchy of numerical methods for solving ordinary 
differential equations. In Fig. 12, diff-eq is a pointer to 
an object of this base class. This object pointer is used 
by the ComputeActivity ( ) member function to compute 
a node’s activity according to (6). Thus, the form of the 
object assigned to the dif f-eq pointer will determine what 
numerical technique is used to approximate the differential 
equation. Likewise, the w-diff-eq data member in Fig. 12 is 
used to store the address of a pointer to an array of pointers to 
ode objects. These objects are used by the Updateweights ( ) 
member function to approximate the differential equations 
that determine the weight values associated with impinging 
connections. The significance of this approach is that the 
classes of nodes used in the simulation of the ARTl network 
do not have to be modified and recompiled if one wishes 
to experiment with different numerical techniques. Instead, 
pointers to objects of the new technique can be assigned 
to these data members, and they will be used in computing 
the activity and weight values of the node. A similar class 
specification exists for each type of node in the ARTl network 
simulation. 

The ARTl neural network class shown in Fig. 13 is created 
by inheriting the network class given in Fig. 4. An additional 
member function is also added so that the network can iterate 
its node and weight equations according to the model presented 
above. The body of this Iterate() member function is 
shown in Fig. 13. This member function is responsible for 
initiating each of the phases depicted in Fig. 5. First, every 
node in the network is instructed to compute its output by 
invoking the ComputeNodeOutput ( ) member function for 
each node object. This member function is responsible for 
invoking the compute-output ( ) transaction of the process 
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c las s  artlam : public ann { 
public: 

void Iterate(doub1s StepSixe); 
// mining  member erfunctions not shown 

1; 

{ 
void artlann::Iterate(doubls StepSk) 

int n; 
tptr tp = acheduler.ackn; 
for (n=O; n<numnodes; n++) 

schednler.wait(numnodea); 
for(n=O; n<numnodes; n++) 

scheduler.wait(numnodes); 
tor(n=O; n<numsodea; n++) 

scheduler.wait(numnodes); 

nd[n]+ComputeNodeOutput(StepSue, tp); 

nd[n]+PropagateOutputs(tp); 

nd[n]+UpdateNodeWeights(StepSi, tp); 

1 

ti 
# o f  p r o c e = r o r s  

Fig. 13. The ARTl network class. 

associated with a node object. As discussed previously, this 
transaction in turn invokes virtual member functions that 
compute the node’s output according the type of node it is. 
Next, the scheduler process associated with the network 
(see Fig. 4) is instructed to wait until all nodes have completed 
computing their outputs. Each subsequent phase in the iteration 
proceeds in a similar manner. 

In order to demonstrate the usefulness of these classes, an 
ARTl network containing 4 nodes in the F1 field, a reset node, 
and 8 nodes in the F2 field (4 nodes in the first layer and 4 
nodes in the second layer) was simulated. The node differential 
equations were numerically approximated using an ode object 
that implements the Runge-Kutta method. A step size of 
was used. All of the node activity and weight values were 
updated at each time step. Three input patterns were presented 
to the network: I’ = 1000, I 2  = 0000, and I 3  = 1100. 1’ was 
presented for a simulated time of 1 s, followed by I 2  which 
was presented for a simulated time of 0.2 s, and then I 3  which 
was also presented for 0.2 s. This results in a total of 140000 
iterations or time steps. Note that 1’ is a null pattern that is 
used between the presentation of other “interesting” patterns. 
That is, the presentation of pattern 1’ can be interpreted as 
the absence of an input pattern. 

The network parameters for this simulation were chosen to 
satisfy the constraints presented in [25]. Fig. 14 shows the 
relative speedups that were obtained on the parallel computer 
shown in Fig. 9 utilizing from one to six processors. Speedup 
values for N processors were calculated by determining the 
ratio of the time taken to execute a simulation on a single 
processor to the time taken to execute the same simulation 
on N processors. The curve marked with 0’s in Fig. 14 is for 
simulations in which the outputs of the nodes were propagated 
at each time step, while the curve marked with 0’s is for the 
optimized simulations in which the output of a node was only 
propagated if it was different from its output at the previous 
time step. Note that a speedup of over 2 is obtained with only 
four processors using the optimized simulation. 

A further demonstration of the performance of these simula- 
tions is given in Fig. 15. In this figure the processing speed, in 
terms of iterations per second, is shown for both the optimized 
and nonoptimized approaches. An iteration is defined as the 

Fig. 14. Relative speedup curves for the concurrent ARTl simulations. The 
0’s mark the nonoptimized simulations, and the U’s mark the optimized 
simulations. 
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Fig. 15. Processing speed versus the number of processors used in the 
concurrent ARTl simulations. The 0’s mark the nonoptimized simulations, 
and the 0’s  mark the optimized simulations. 

processing required to compute one simulated time step (see 
Fig. 5). Note that for a single processor, the optimized simula- 
tion is more than 1.5 times as fast as the nonoptimized solution. 
Furthermore, as each additional processor is added (up to 
four) this performance difference increases. For more than four 
processors, the performance difference is constant. This figure 
demonstrates how the simulation techniques presented here 
can be used to reduce the communication overhead in parallel 
implementations of neural network models. 

Additional information about processor utilization during 
these simulations is contained in Table I. Table I(a) shows 
the percentage of time the processors were busy during the 
six simulation runs in which the outputs of the nodes were 
propagated at each time step. 

This includes the time that a processor is waiting to be- 
come bus master. Lower number processors have priority for 
becoming bus master (i.e., bus mastership is granted via a 
daisy chain). Notice that higher numbered processors in Table 
I(a) are busier than the corresponding processors in Table I(b). 
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processors 
1 

TABLE I 

IN WHICH THE OUTPUT OF NODES WERE PROPAGATED AT EACH 
(a)PROCESSOR UTILIZATION DURING THE SIMULATION RUNS 

TIME STEP. (b) PROCESSOR UTILIZATION DURING THE SIMULATIONS 
RUNS IN WHICH THE OUTPUT OF NODES WERE PROPAGATED ONLY IF 
THEIR OUTPUTS DIFFERED FROM THOSE AT THE PREVIOUS TIME STEP. 

~~ ~ 

%busy 1 processor 
1 I 2 3 4 1 5 1  6 

1 0 0 1  - 1 - 1  - I - I -  

6 98 I 95 1 87 I 74 I 71 I 82 

2 
3 
4 

I 

98 87 
94 92 72 
88 73 72 87 

This indicates that performance degradation is related to bus 
contentions during interprocessor communications. However, 
if bus contention was the only factor limiting parallelism, then 
the higher numbered processors (with lower priority for bus 
access) would be the busiest. This does not happen. In the 
simulations using six processors, the first two processors are 
the busiest. This indicates that there is a degree of program- 
limited parallelism in these simulations. 

In order to gain a better understanding of the type of 
performance that can be expected from this simulation system 
for different neural network models, let us consider Fig. 
5 again. Recall that in this figure a solid line indicates a 
running process, while a dashed line indicates that the process 
is waiting. The horizontal arrows in this figure represent 
transaction calls. That is, they represent the communication 
overhead associated with the simulation. If we assume a 
fixed amount of communication overhead, then the amount 
of speedup that can be obtained is directly related to the 
degree of overlap (in time) of the solid lines in this figure. The 
more compute intensive the nodes’ processing activities are, 
the longer the solid lines in Fig. 5 become, and consequently 
the degree of overlap increases. This means that relative to the 
communication overhead, a larger percentage of the processing 
time is devoted to parallel computation. Thus, we would expect 
that more complicated (i.e., compute intensive) neural network 
models would achieve higher speedup results. This expected 
behavior has been verified by results obtained from additional 
simulations. 

VI. CONCLUSION 
A framework for the concurrent simulation of neural net- 

work models as discrete event nonlinear dynamical systems 

was presented, and the simulation of a specific neural net- 
work model was demonstrated on a general-purpose parallel 
computer. The basic components of the simulation system 
are two generic base classes that capture the functionality 
of general neural network models. Specific neural network 
models are created through the inheritance of these classes. 
The most complex issues involved in the development of the 
simulation system were those related to the synchronization 
of the concurrent processes in the simulation, as well as 
deadlock avoidance. The base classes encapsulate these con- 
current processes, thereby allowing users to construct novel 
neural network models from a higher level of abstraction. 
Specifically, the user does not have to deal with synchroniza- 
tion and deadlock avoidance issues when constructing neural 
network models. The flexibility of this system was exhibited 
by simulating a specific nontrivial neural network model on a 
general-purpose parallel computer. 

The parallel computer used to execute the simulation pro- 
gram was a bus-based shared memory system. The main 
advantage of these types of systems is that they are easy to 
build with off-the-shelf components; however, bus contention 
is a limiting factor in bus-based parallel computers. Typically 
only a small number of processors can be effectively utilized 
by such computer systems. The use of additional processors 
leads to diminishing returns in terms of processor utiliza- 
tion, and therefore adversely affects speedup. The results we 
obtained indicate that the simulation system would scale to 
larger parallel computers that utilize switching networks for 
interprocessor communication. 

It should be mentioned that this system can also be used 
to simulate neural networks whose learning rule is based on 
the popular back-propagation algorithm [26]. Although the 
back-propagation learning rule violates the locality constraint 
discussed in Section 111, a number of techniques have been 
developed that remove this problem (see [27] and [28]). 
These forms of back-propagation learning that employ local 
techniques are well-suited for the concurrent simulation system 
discussed here. 
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